

Designing the system architecture

Topic 7

ICT284 Systems Analysis and Design

About this topic

System design proceeds from a high level, architectural design, to the detailed specifications for software and databases that enable the solution to be built. In this topic we'll begin to look in more detail at the activities involved in systems design, starting with defining the system architecture and components, and designing the database.

Unit learning outcomes addressed in this topic

- 1. Explain how information systems are used within organisations to fulfil organisational needs
- 2. Describe the phases and activities typically involved in the systems development life cycle
- 3. Describe the professional roles, skills and ethical issues involved in systems analysis and design work
- 4. Use a variety of techniques for analysing and defining business problems and opportunities and determining system requirements
- 5. Model system requirements using UML, including use case diagrams and descriptions, activity diagrams and domain model class diagrams
- 6. Explain the activities involved in systems design, including designing the system environment, application components, user interfaces, database and software
- 7. Represent early system design using UML, including sequence diagrams, architectural diagrams and design class diagrams
- 8. Describe tools and techniques for planning, managing and evaluating systems development projects
- 9. Describe the key features of several different systems development methodologies
- 10. Present systems analysis and design documentation in an appropriate, onsistent and professional manner

Topic learning outcomes – 1

After completing this topic you should be able to:

- Explain how designing the system architecture involves decisions from a high level of abstraction to a low level
- Interpret location, network and deployment diagrams used to describe the system architecture
- Describe the three-layer architecture and explain why it is important in system design
- Describe the activities involved in the systems design activity 'describe the system environment'
- Explain how application components can be defined and integrated

Topic learning outcomes - 2

After completing this topic you should be able to:

- Describe in general terms what is involved in designing the database and incorporating it into the system design
- Differentiate between the responsibilities of the data administrator and database administrator
- Discuss the different options for distributing a database
- Briefly explain the importance of protecting the database and some methods used

Resources for this topic

READING

• Satzinger, Jackson & Burd, Chapter 7

We will cover much of this only briefly. The main sections are: 'Architectural Concepts', p195-200 'Describing the Environment', p203-207 (skim) and 'Designing Application Components', p208-213.

• Satzinger, Jackson & Burd, Chapter 9

The main topic we will cover from this chapter is section 'Distributed Database Architectures', p279-284.

Skim sections 'Protecting the Database' and 'Databases and Database Management Systems' p258-262 for background.

Omit section 'Relational Databases' entirely.

Resources for this topic

Except where otherwise referenced, all images in these slides are from those provided with the textbook: Satzinger, J., Jackson, R. and Burd, S. (2016) *Systems Analysis and Design in a Changing World*, 7th edition, Course Technology, Cengage Learning: Boston. ISBN-13 9781305117204

Tutorial 7 –

From analysis to design

In the first of several tutorials covering system design, we'll review the main activities and concepts involved in systems design, and apply them to the Conference Coordinator Information System project.

As one of these decisions, we'll examine the 'Buy vs Build' question. As much of the functionality of the CCIS looks fairly standard, buying rather than building the system from scratch has some attractive aspects. To make an informed decision, however, we need to carefully evaluate what the packaged options can offer, and compare this with the requirements we have specified for the new system.

Topic outline

- Introduction
- Architectural patterns
- Some architectural concepts
- Design activity: describe the system environment
- Design activity: design the application components
- Design activity: design the database

Introduction

Architectures

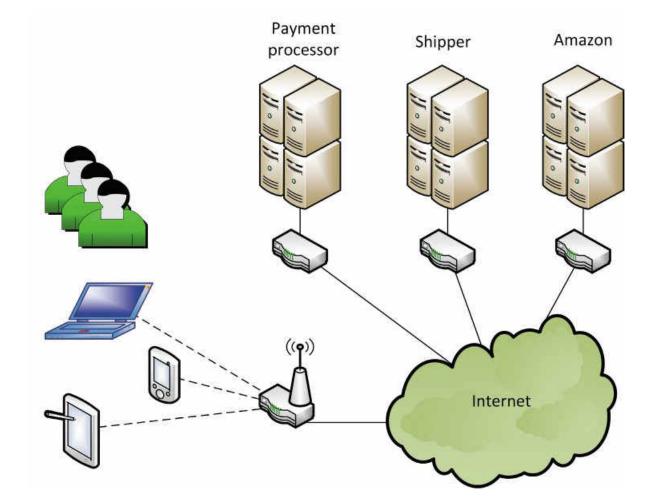
- Architecture is the way the IT in a business is organised and put together
- Can be defined from the highest level enterprise architecture, which focuses on the defining and supporting the business goals of the organisation
- To the lowest level of software architecture, specifying how the software components are defined and interact
- In this topic we will focus on the intermediate level of systems architecture

System architecture

Two interdependent aspects:

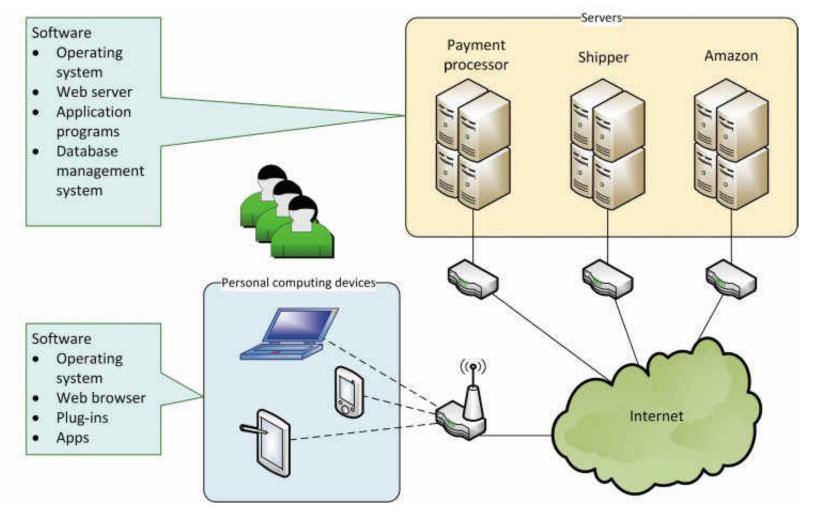
- **Technology** architecture
 - Computer hardware, network computers and hardware, and system software
 - Defines the infrastructure that supports the application software
- Application architecture
 - The software applications
 - Components are distributed across the various devices and connected via networks and protocols

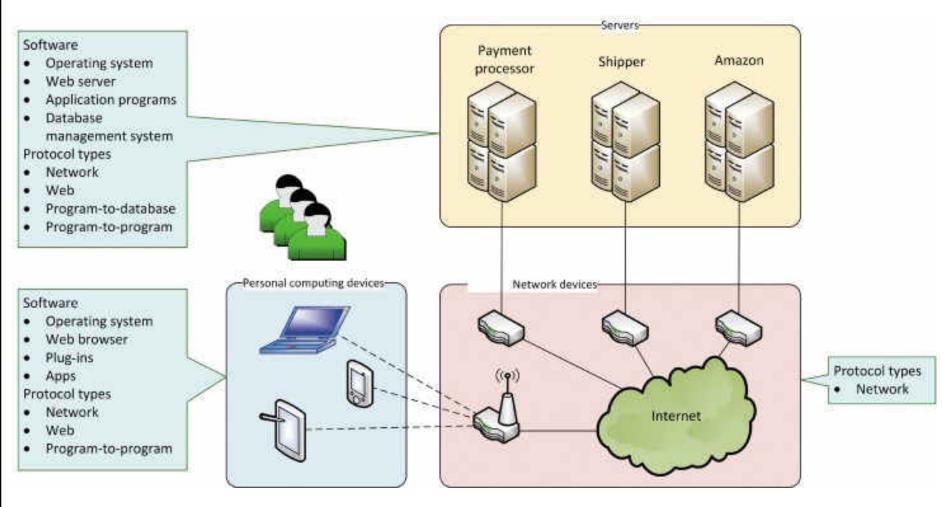
Example: Amazon.com



The following slides use Amazon.com as an illustration of what is involved in a large, distributed web-based system:

- 1. Computing devices
- 2. Their connection across networks
- 3. The software components that are used, and how they are distributed over the devices
- 4. The protocols that are required to ensure coordination and accurate, efficient data exchange among components


Example: Amazon.com Simplified architecture


Example: Amazon.com Software

Example: Amazon.com Software and protocols

... So how do we decide what we need and what goes where?

- As with most problems, we can consider from the top down – from the highest level of abstraction (which can also be readily communicated to users) to the lowest level of coding
- The ideas of predesigned and reusable architectural patterns are relevant here

A useful summary here: <u>https://msdn.microsoft.com/en-</u> <u>us/library/ee658117.aspx</u>

Architectural styles or patterns

- These are the highest level of abstraction in software design
- The architectural style (now usually called pattern) describes in broad terms how the parts of the system will be organised and interact event-driven, client-server, data-centric, etc
- "an architectural style determines the vocabulary of components and connectors that can be used in instances of that style, together with a set of constraints on how they can be combined"*

* David Garlan and Mary Shaw, January 1994, CMU-CS-94-166, see "An Introduction to Software Architecture" at <u>http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf</u>]

Architectural patterns

Each pattern has properties that define it:

- A vocabulary of **design elements** what the components and connectors are
- A set of configuration rules how these components can be put together
- A semantic representation a meaning that constrains what it can and can't do
- Built-in analysis within the pattern

Benefits:

- Help understand and communicate the system-level organisation
- Design level and code level **reuse**
- Help provide **interoperability** of system components

From Verma, V. (2009). Software architecture: a case based approach. Pearson. pp23.

Architectural patterns

- There are a number of different patterns, each suited to solving a different, recurring, type of problem
- For example in **pipes and filters** the output of one processing element (filter) becomes the input (through the pipe) to the next

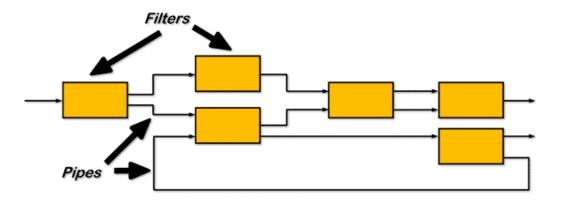
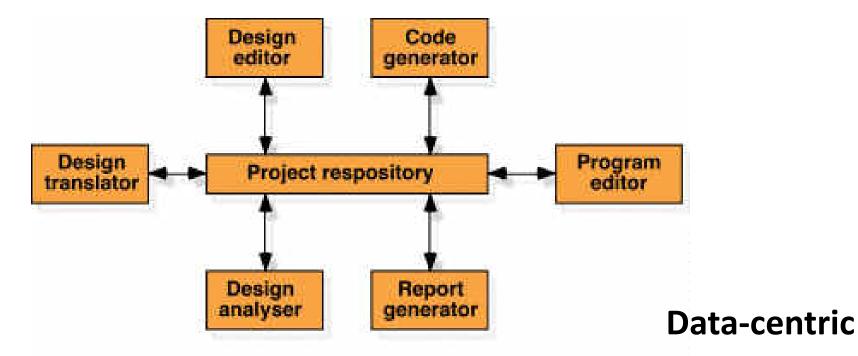
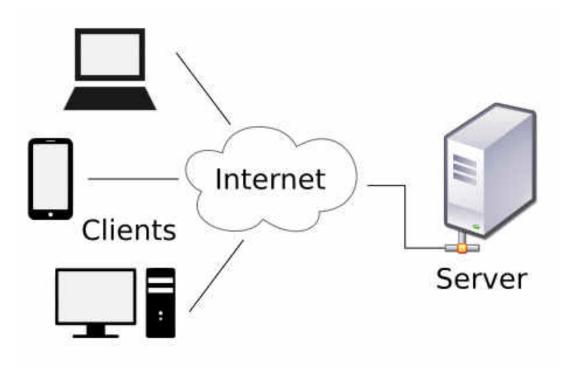



Diagram by J. Armarego



After: Sommerville

Diagram by J. Armarego

Client-server

Image from Wikipedia

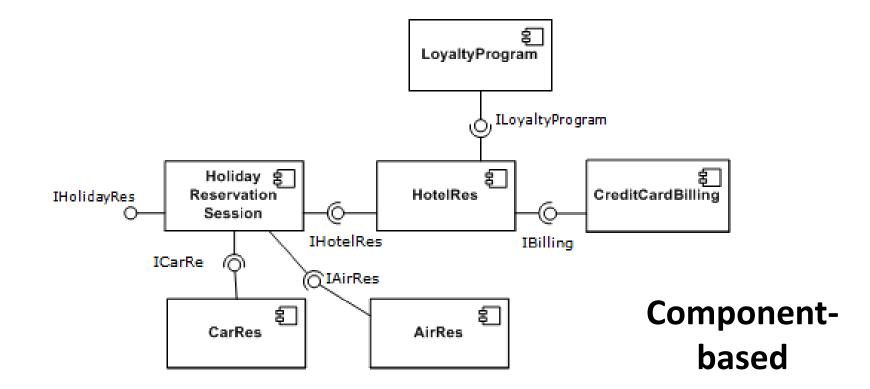
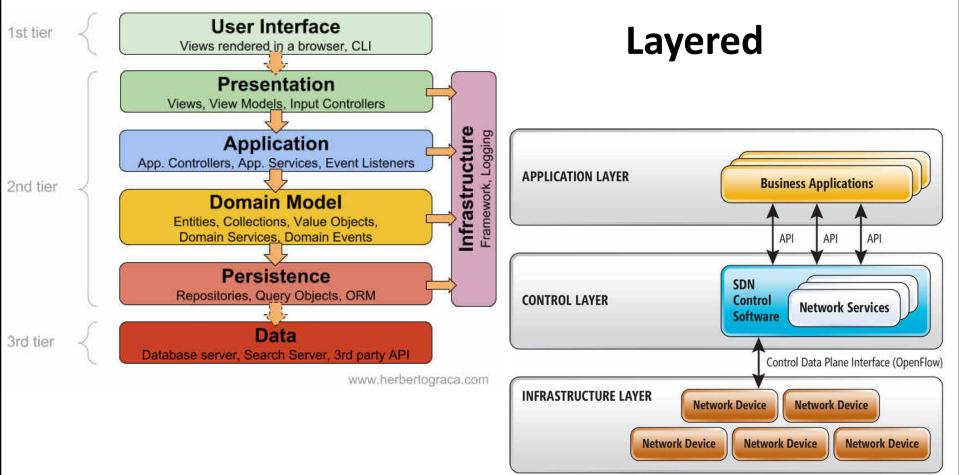



Image by Cmendes at English Wikipedia

Source: Open Networking Foundation

Images from https://herbertograca.com/2017/08/03/layered-architecture/

Catalogue of architectural styles/patterns

Structure

Component-based Monolithic application Layered Pipes and filters

Shared memory

Database-centric Blackboard Rule-based

Messaging

Event-driven aka implicit invocation Publish-subscribe Asynchronous messaging

List from Wikipedia

Adaptive systems Plug-ins Microkernel Reflection Domain specific languages

Distributed systems

Client-server (2-tier, 3-tier, n-tier) Shared nothing architecture Space-based architecture Object request broker Peer-to-peer Representational state transfer (REST) Service-oriented Cloud computing patterns

Combining architectural patterns

- "The architecture of a software system is almost never limited to a single architectural style, but is often a combination of architectural styles that make up the complete system.
- "For example, you might have a SOA design composed of services developed using a layered architecture approach and an object-oriented architecture style.
- "If you are building a desktop application, you may have a client that sends requests to a program on the server. In this case, you might deploy the client and server using the client/server architecture style, and use the component-based architecture style to decompose the design further into independent components that expose the appropriate communication interfaces."

This section from https://msdn.microsoft.com/en-us/library/ee658117.aspx

Some architectural concepts

Web-based applications

- Use a web browser as user interface
- Are accessed via a URL
- Server-side software is called from a web server
- Use of web standards to communicate between browser and server

Very common - easy to access and use, BUT target for security breaches as we standards are open and widely known

Software as a Service (SaaS)

- Similar concept to a utility software is accessed and used without being installed locally
- -- the organisation only pays for the service and doesn't have to install or maintain anything
- Little or no software is installed on the user's device
- User data is isolated and stored on common servers

Web Services

- Software function that is executed using Web standards:
 - Access via a URL
 - Inputs sent via the URL
 - Executes remotely
 - Data returned within a Web page
- Enables software functions developed by one organisations to be embedded within another organisation's systems, like a subroutine
 - e.g. calculate shipping charges, process credit card
- Designers must decide what functionality can be incorporated as Web services, and if any of their own software should be made available as Web services to other systems

Interoperability

- The ability of a component of a system to interact with other components or systems
- Applies to all components whether built, purchased, or used as a service
- -- vital to have an understanding of how components will (or won't) play together

Distributed architectures

- Although systems can be designed for a standalone, single machine...
- ... most systems will be *distributed* across many machines and locations, sometimes across the world
- Distribution can also improve performance and reliability
- There are various ways of organising software to access distributed data and resources, e.g.
 - Client-server architecture
 - Three-layer architecture

Distributed architectures: client-server

- Software design and deployment method that divides software into component 'server' (managing resources) and 'client' (using those resources)
- Client requests resource from server, server returns it
- Server software can be on single machine or distributed across multiple (e.g. server farms)

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Distributed architectures: Three-layer architecture

A client/server architecture that divides an application into view layer, business logic layer, and data layer

View layer

contains the user interface

Business logic layer or domain layer

 contains the programs that implement the business rules and processes

Data layer

interacts with the data

Three Layer Architecture

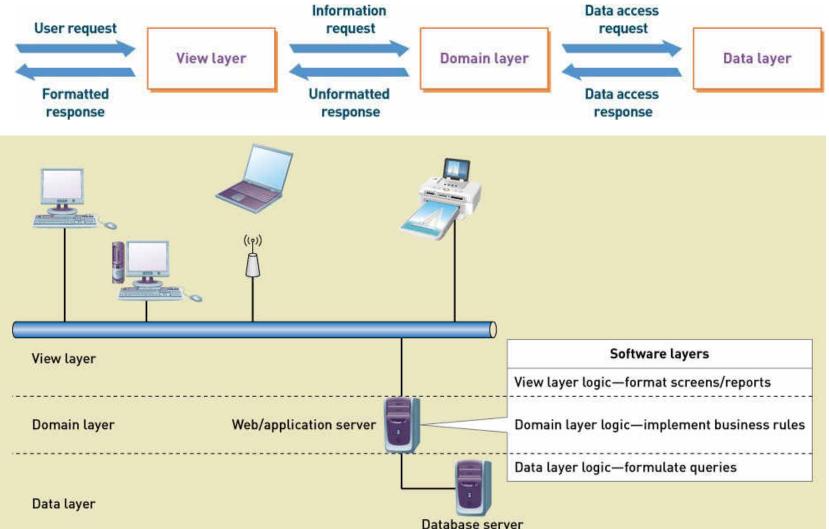


Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Distributed architectures: Three-layer architecture

- A client/server architecture that divides an application into view layer, business logic layer, and data layer
- Very commonly used architecture
- Layers can execute on the same computer, separate computers or split across computers
- Flexible layers can be relatively independent of one another – the only dependences are through the requests and responses
- can re-deploy resources in response to changing conditions

Advantages

- Accessibility of web based applications
- Low-cost communication through high capacity internet backbone
- Widely implemented standards

Potential problems

- Security
- Throughput
- Changing standards

Design activities - reminder

Design activities - reminder

	Core	Iterations					
	processes	1	2	3	4	5	6
	Identify the problem and obtain approval.						
Design activities	Plan and monitor the project.						
Describe the environment.	Discover and understand details.						
Design the application components.	Design system components.						
Design the database. Design the software classes and methods.	Build, test, and integrate system components.				\frown		
	Complete system tests and deploy the solution.						

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Key design questions for each activity

Design activity	Key question
Describe the environment	How will this system interact with other systems and with the organization's existing technologies?
Design the application components	What are the key parts of the information system and how will they interact when the system is deployed?
Design the user interface	How will users interact with the information system?
Design the database	How will data be captured, structured, and stored for later use by the information system?
Design the software classes and methods	What internal structure for each application component will ensure efficient construction, rapid deployment, and reliable operation?

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Design activity: Describe the system environment

Describe the environment

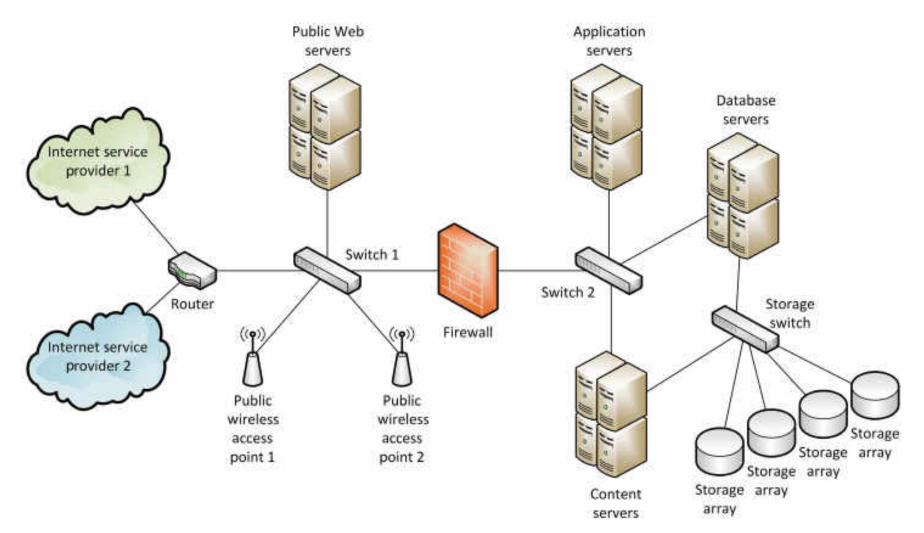
How will this system interact with other systems and with the organisation's existing technologies?

- A system will rarely be completely new it will have to fit with what already exists in the organisation, so this can limit design choices
- Two key elements of environment:
 - External systems
 - Technology architecture

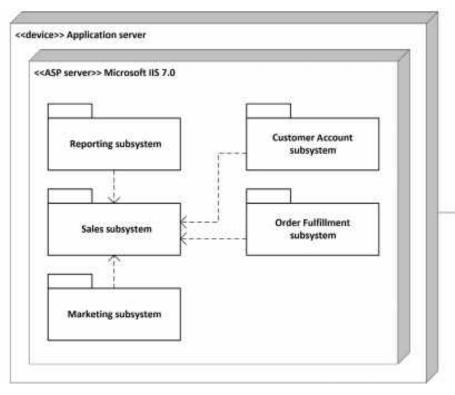
Describe the system environment: questions to ask

- 1. What are the key features of the existing or proposed technology environment that will support or constrain the system?
- 2. What external systems and databases will the new system interact with?
- 3. What devices will be used for automated inputs and outputs?
- 4. What user interface technology will be used?
- Once these questions are answered, the systems designer knows what s/he is working with and can commence designing and documenting in architectural diagrams

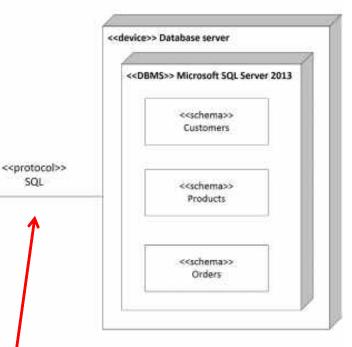
Architectural diagrams used in systems design


- Location diagrams show where all the various system components (hardware, buildings, users) are located geographically
- Network diagrams show how locations and hardware components are interconnected with network devices and wiring
 - Different aspects and levels of detail can be emphasised
- Deployment diagrams show how software components are distributed across hardware and system software

Location diagrams



Network diagrams



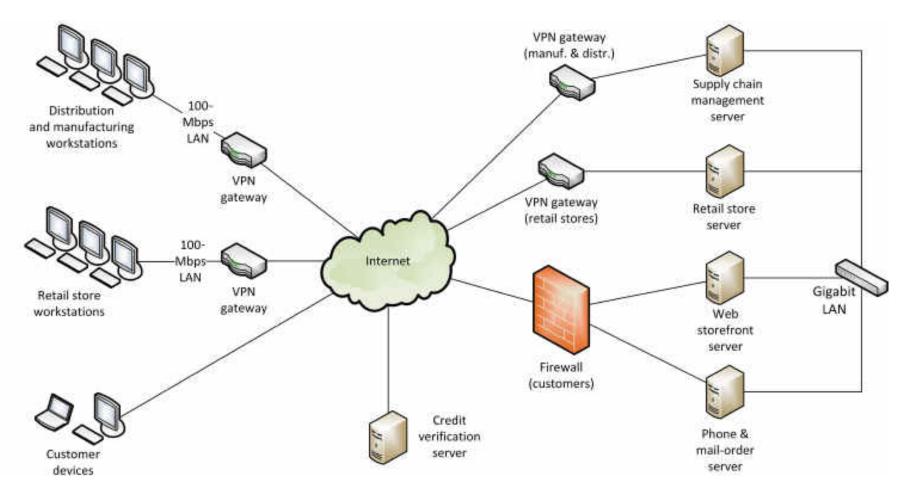
Deployment diagrams

Application server hosting Microsoft IIS, which hosts several of the subsystems of the RMO CSMS

Database server hosting Microsoft SQL Server,

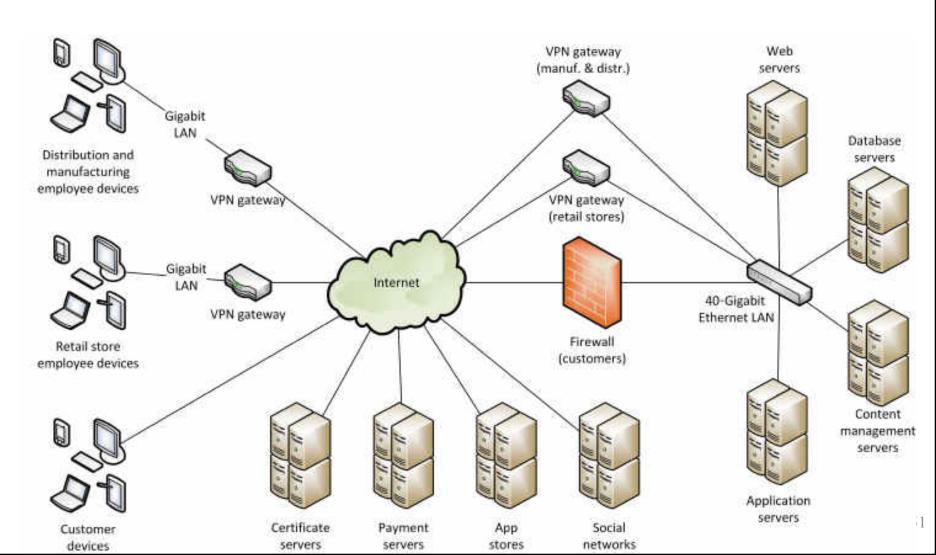
which hosts the customer, products, and orders data

Communication via SQL


Example: RMO CSMS environment

- RMO currently has a data centre in Park City, with internal networks in every office, warehouse, manufacturing plant and retail store
- The distribution centres and manufacturing plants are connected via a VPN to the data centre, as are the retail stores
- There are separate servers for each primary system and a LAN connects all servers and users in the data centre and corporate offices

Example: Existing RMO CSMS environment


Example: Proposed RMO CSMS environment

Updates for the new system would now involve:

- Support for mobile devices and apps
- Updated support for Web technologies
- Social networking
- And security considerations in all of the above

Example: Proposed RMO CSMS environment

Murdoch

UNIVERSITY

Example: Updated architecture diagram shows:

- Additional user interface devices
- Upgraded network speeds
- More servers, and servers grouped by service type (web, database, content management, application)
 - External hosting could be an alternative
- External service providers (payment, app stores, social networks)

Design activity: Define the application components

Design the application components

What are the key parts of the information system and how will they interact when the system is deployed?

- Application component is a well defined unit of software that performs some function(s)
- Need to decide how the functionality is to be packaged into components, and how they will interact, e.g.
 - Subsystems
 - Database
 - Separation into layers
- Application component design is precursor to defining the software classes and methods

Design the application components: boundaries

- We need to design the system so that the application components form logical units (perform one or more specific tasks)
- Can be top-down or bottom-up, but need to look for similarities among system functions to guide grouping:
 - Actors group software for use cases that interact with the same actors
 - Shared data group use cases that interact with the same domain classes
 - Events group use cases that are triggered by the same event

Example: RMO CSMS application components

• Grouping by customer actor – partial

Use case	User/actor	Domain class(es)	Event(s)	Group
Create phone sale	Phone sales representative	ProductItem, InventoryItem, SaleItem, Sale, SaleTrans	Customer request while shopping by phone	А
Create store sale	Store sales representative	ProductItem, InventoryItem, SaleItem, Sale, SaleTrans	Customer request while shopping in store	В
Create/update customer account	Customer, phone or store sales representative	Customer, Account, Address	Customer request or sale to a new customer	
Look up order status	Shipping, customer, management, phone or store sales representative	ProductItem, InventoryItem, SaleItem, Sale, SaleTrans, Shipment, ReturnItem	Customer, representative, shipping, or management request	
Track shipment	Shipping, customer, management, phone or store sales representative	Shipment, Shipper, SaleItem	Customer, representative, shipping, or management request	
Create item return	Customer, phone or store sales representative	Saleltem, ReturnItem	Customer requests return	С
Search for item	Customer, phone or store sales representative	Productitem	Customer request while shopping online, by phone, or in store	
View product comments and ratings	Customer, phone or store sales representative	ProductItem, ProductComment	Customer request while shopping online, by phone, or in store	
View accessory combinations	Customer, phone or store sales representative	ProductItem, AcessoryPackage	Customer request while shopping online, by phone, or in store	

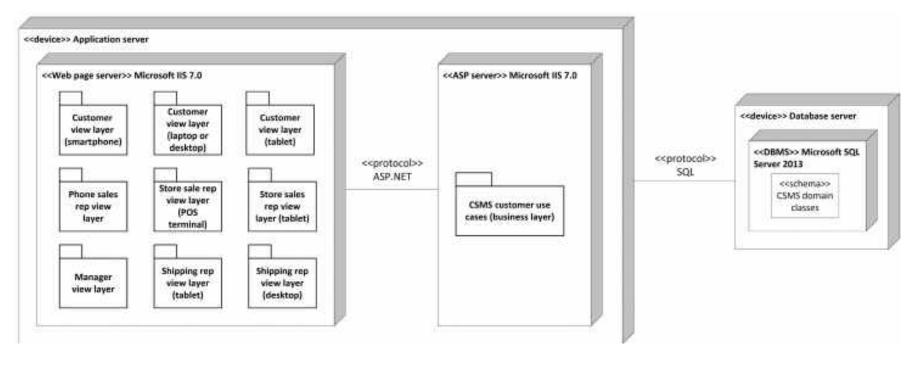
(See text for complete example)

Example – CCIS use case list

Grouping by actor

Use Case Name	Actors
Submit paper	Author
Reject late paper [temporal]	Author
Reject incomplete paper	Editor
Submit camera-ready paper	Author
Withdraw paper	Author, editor
Record reviewer details	Reviewer
Assign number to paper [state]	
Allocate paper	Editor
View paper	Reviewer
Create paper review	Reviewer
Remind reviewer [temporal]	Reviewer
Set reviewer to unavailable [state]	
View reviewer comments	Editor
Record decision	Editor
Notify of decision	Editor, Author
Create/update schedule	Editor
View schedule	Editor, Chair, Author, Reviewer
Create summary of papers	Editor
View summary of papers	Editor, Chair, Author, Reviewer
Create author list	Editor
View author list	Editor, Chair, Author, Reviewer

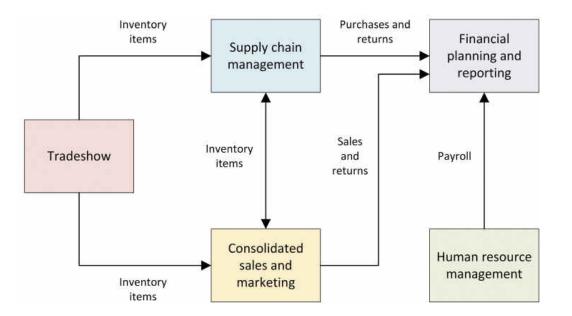
Example: RMO CSMS application components


Once the groupings have been analysed they can be allocated to different layers of the 3-layer architecture, e.g.

- Data layer contains the database representing the entire data model
- Business (domain) layer here could include all of the use cases, as there are significant overlaps in actors, domain classes and events
- View layer several, each customised and optimised for a different user

This can be shown in a deployment diagram (next)

Example: Deployment diagram for RMO CSMS showing distribution of application components


View layer Business layer Data layer

Design the application components: integration

- The new system will seldom be completely standalone and will need to integrate with existing systems
- Similarly, the new system itself may not be entirely custom built, so will need to integrate purchased or SaaS components with developed ones
- Need to define how these components will communicate, e.g.
 - Batch data export and import
 - Data import via Web services
 - Direct access via utilities

Example: RMO CSMS subsystem integration showing data flows

And synchronisation of data copies

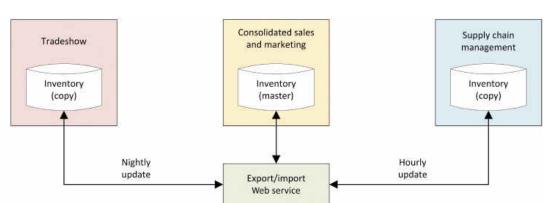


Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Murdoch

UNIVERSITY

Design activity: Design the database

Design the database

How will data be captured, structured an stored for later use by the information system?

- By definition, an information system requires data – usually (though not always) in a database
- Current technology frequently uses Relational Database Management Systems (RDBMS)
- Requires converting the data model (from the DMCD or ERD) to a relational database
- Database design also involves addressing many other technical issues, such as performance and security

Database and DBMS

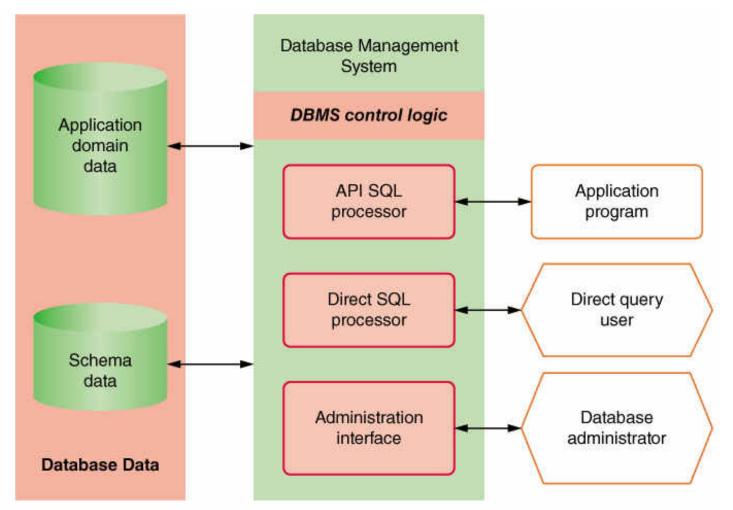


Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Database and DBMS

- Database (DB) -- an integrated collection of stored data that is centrally managed and controlled
 - A distributed database is one that is physically located across different locations
- Database management system (DBMS) -- a system software component that manages and controls one or more databases
- Schema -- database component that contains descriptive information about the structure of the data stored in the physical data store
- Structured Query Language, SQL -- the standard query language to access and update data in a relational DBMS

Data administrator and database administrator

Permanent technical positions in the IT department responsible for aspects of the database:

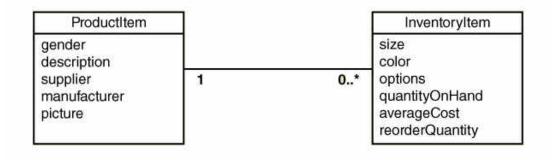
- Data administrator responsible for structure and integrity of the *data* itself:
 - Data standards
 - Data ownership and access
 - Data quality
- Database administrator responsible for the correct and efficient functioning of the DBMS
 - Managing multiple users
 - Implementing security
 - Performance
 - Backup and recovery

Design the database

In iterative development database is foundational: early iterations need to focus on data and key portions of the database

Starting with the domain model class diagram (or ERD)...

- Choose database structure Usually relational (RDBMS)
- Design database schema Convert data model to tables
- Define constraints primary keys; foreign keys; domain constraints
- Design architecture (distributed, etc) according to business requirements


Relational database structure – 'tables' of rows and columns

te_	Productitem				
-	ProductitemID ·	Gender •	Description	Supplier	Manufacturer + Picts
	€ 10564	Both	Super Akpine Performance Skis	K2	K2
W,	H 10766	Man	Extreme Ski Boots	Nordica	Nordica
or A	1244	Man	Casual Chino Trousers	West Coast	Adida
	e) 1245	Man	Fleece Crew Sweatshirt	West Coast	Adida
	₫ 1246	Man	Fleece Crew Sweatshirt V-Neck	West Coast	Adida
	H 1247	Man	Fleece Crew Sweatshirt Zippered	West Coast	Adida
	H 1248	Man	Solid Color Flannel Shirt	RMO	RMO
	E 1249	Man	Plaid Flannel Shirt	RMO	RMO
ld _	A 1250	Man	Polo Shirt	RMO	RMO
bute	1251	Man	Polo Shirt Zippered	RMO	RMO
	# 1252	Man	Navigator Jacket	Colorado Supply	North Face
	E 1253	Man	Navigator Jacket Hooded	Colorado Supply	North Face
	E 1254	Man	Cotton Thermal Shirt	Colorado Supply	Under Armour

Representing associations between classes in the database

ProductItemID, the **key** attribute in ProductItem, is included in Inventory Item as **foreign key** to make the link

10							Produ	ictitem					
	ProductItemID	- Gender -		C	escription		Sup	plier •	Manufa	cturer	•	Picture	
Đ	10564	Both	Super A	Akpine Per	formance SI	cis	К2		K2				
141	10766	Man	Extrem	ne Ski Boot	ts		Nord	lica					
Đ	1244	Man	Casual	Chino Tro	users								
1.	1245	Man	Fleece	Crew Swe	atshirt								
(4)	1246	Man	Fleece	Crew Swe	atshirt V-Ne	ck							
(H)	1247	Man	Fleece	Crew Swe	atshirt Zippe	ered							
(H)	1248	Man	Solid C	olor Flann	el Shirt								
(1)	1249	Man	Plaid Fl	lannel Shir	t								
(Ŧ)	1250	Man	Polo Sh	nirt									
1.14-1	1251	B.d.m.n			20								
	1251 # I≪	Man N N N	No Filter	Search	ed		Invent	oryltem					
cord	# 14 4 3 of 13	ы ж. Т <u>у</u>	- horas and a state of the	Search		QuantityOnHan			e Cost 🔹	Reco	rder	Quantity	
	Inventoryiter	ы ж. Т <u>у</u>	No Filter	Search					e Cost + \$12.75	Reco	rder		
	Inventorylter • 1 86779	roductitei •	No Filter	Search Color • Khaki			d •			Reco	rder		10
	ti H 4 3 of 13 Inventorylter - F 86779 1 86780 1	roductiter -	No Filter Size • 30/30 30/30	Search Color • Khaki			d • 45		\$12.75	Reco	rder		10 10
••••••••••••••••••••••••••••••••••••••	Inventorylter - 86779 3 86780 1 86781 1	• • • • • • • • • • • • • • • • • • •	No Filter Size • 30/30 30/30	Search Color • Khaki Slate LightTan			d • 45 10		\$12.75 \$12.75	Reco	rder		10 10 10
	Inventorylter • 86779 1 86780 1 86781 1 86782 1	• • • • • • • • • • • • • • • • • • •	No Filter Size • 30/30 30/30 30/30	Search Color • Khaki Slate LightTan Khaki			d • 45 10 17		\$12.75 \$12.75 \$12.75	Reco	rder		10 10 10
	Inventorylter • 86779 3 86780 3 86781 3 86782 3 86783 3	• • • • • • • • • • • • • • • • • • •	No Filter 30/30 30/30 30/30 30/31 30/31	Search Color • Khaki Slate LightTan Khaki			d • 45 10 17 22		\$12.75 \$12.75 \$12.75 \$12.75 \$12.75	Reco	rder		10 10 10 10
••••••••••••••••••••••••••••••••••••••	Inventorylter • F 86779 1 86780 1 86781 1 86782 1 86783 1 86783 1	• • • • • • • • • • • • • • • • • • •	No Filter 30/30 30/30 30/30 30/31 30/31	Search Color • Khaki Slate LightTan Khaki Slate LightTan			d • 45 10 17 22 6		\$12.75 \$12.75 \$12.75 \$12.75 \$12.75 \$12.75	Reco	rder		10 10 10 10
ecorc 	Inventorylte: - 86779 3 86780 1 86781 3 86782 1 86783 3 86784 1 86785 1	• • • • • • • • • • • • • • • • • • •	No Filter 30/30 30/30 30/30 30/31 30/31 30/31	Search Color • Khaki Slate LightTan Khaki Slate LightTan Khaki			d • 45 10 17 22 6 31		\$12.75 \$12.75 \$12.75 \$12.75 \$12.75 \$12.75 \$12.75	Reco	rder		10 10 10 10 10
+ + + + + + + + + + + + + +	Inventorylter - 86779 1 86780 1 86781 1 86782 1 86783 1 86783 1 86784 1 86785 1		No Filter 30/30 30/30 30/30 30/31 30/31 30/31 30/32 30/32	Search Color • Khaki Slate LightTan Khaki Slate LightTan Khaki			d • 45 10 17 22 6 31 120		\$12.75 \$12.75 \$12.75 \$12.75 \$12.75 \$12.75 \$12.75 \$12.75	Reco	rder		100 100 100 100 100 100

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Database architectures

- Databases and their DBMSs may be deployed in a number of ways:
 - Single desktop system
 - Shared database on a LAN
 - Large database requiring several servers to host
 - Multiple databases distributed globally
- In a large, widely spread organisation it makes sense to *distribute* parts of the database to where it is most used
 - Performance, security, reliability, local management

Distributed database architectures

 A distributed relational database distributes or duplicates tables to multiple database servers located in geographically important locations, according to business needs

Various possibilities:

- Vertical partitioning (by columns of the database)
- Horizontal partitioning (by rows of the database)
- Replication (of parts or all of the database)
- Combinations of these

Distributed database design

 Horizontal Partitioning – different rows are stored at different locations.

AcctNumb	- LastName	- FirstName -	SSN -	TypeOfAcct -	Balance -	DateLastActivity -	
01-85562-1	Jones	Bill	878-77-9890	Checking	\$ 7,908.39	5/9/2014	U.S.
01-85444-2	Johnson	Harold	676-44-3433	Checking	\$25,698.33	5/2/2013	accounts
02-45443-2	Williams	Jonathon	343-44-2322	Checking	\$ 3,938.77	4/4/2012	
01-34999-1	Redd	Mary	898-79-3487	Savings	\$12,898.71	12/2/2013	
01-23989-2	Chun	Tun	233-59-6765	Savings	\$ 8,932.67	1/8/2014	Hong Kon
01-87889-4	Gang	Вао	322-48-3545	Checking	\$ 568.33	3/4/2014	accounts
01-32339-2	Jiang	Rui	550-43-5454	Savings	\$35,788.23	7/8/2014	
02-39988-1	Ma	Shuo	343-98-2345	Checking	\$ 1,893.55	8/23/2014	

Distributed database design

 Vertical Partition – Different columns are stored at different locations

IIC partition

PartNumber	- Description -	Manufacturer -	QtyOnHand -	SchematicNo -	InspectionNo -	QtyOnHand2 -
4568-AC9	Screw assembly	Westco Inc	348	42-596	56	346
7618-IF44	Handle assembly	Japan Tools	276	16-443	43	434
7678-AD22	Door1 assembly	Tokyo Hardware	58	76-454	65	765
4890-XX88	Door2 assembly	Tokyo Hardware	97	78-443	34	446
9890-CD87	Interior module	Open Electronics	454	23-794	67	454
6766-DY65	Interior seal assembly	Sealants Inc	611	56-545	23	2132
8769-DD77	Connection assembly	Open Electronics	546	90-787	22	722
2311-AB28	Crank assembly	Westco Inc	768	33-571	12	121
3432-RB88	Double pulley assembly	Westco Inc	564	90-443	43	342

Japanese partition

Combinations of replication, horizontal, and vertical are possible

Image from Whitten, J.L., & Bentley, L.D, (2007), Systems Analysis and Design Methods, 7th Edition, McGraw-Hill. p495

Data Partitioning and Data Replication

Log	ical Data Store	Physic usin	cal Data Stores g Partitioning	Physical Data Stores using Replication		
1	CUSTOMERS	1P.#	Oracle 7: REGION 1 CUSTOMERS	Not applicable. Branch offices do not need access to data about customers outside of their own sales region.		
		1P.#	Oracle 7: REGION 2 CUSTOMERS			
2	PRODUCTS	branch	plicable. All offices need to data for all	2M	Oracle 8i: PRODUCTS (Master)	
Slide 74		produc sales re	ts, regardless of egion.	2R	Oracle 8i: PRODUCTS (Replicated Copy)	

Example: Database architecture for RMO CSMS -

Replicated and partitioned database

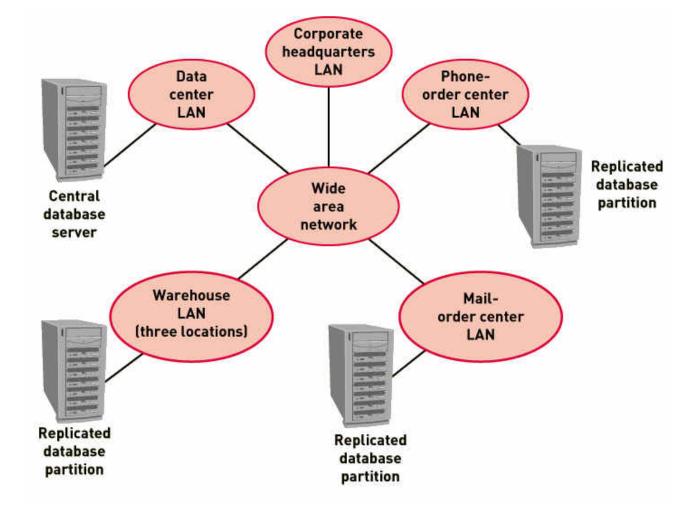


Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Protecting the database

- Security and access usually via access privileges
- Transaction Logging a technique to record all updates including change, date, time, user
 - Helps to prevent fraud
 - Recovery mechanism for failures

Concurrency and Update Controls

- Transaction a piece of work with several steps, either all must complete or none must be accepted
- Locking is used to control transaction sequencing so that it is correct even when multiple transactions occur at the same time

Topic learning outcomes revisited

After completing this topic you should be able to:

- Explain how designing the system architecture involves decisions from a high level of abstraction to a low level
- Interpret location, network and deployment diagrams used to describe the system architecture
- Describe the three-layer architecture and explain why it is important in system design
- Describe the activities involved in the systems design activity 'describe the system environment'
- Explain how application components can be defined and integrated
- Describe in general terms what is involved in designing the database and incorporating it into the system design
- Differentiate between the responsibilities of the data administrator and database administrator
- Discuss the different options for distributing a databases
- Briefly explain the importance of protecting the database and some methods used

What's next?

In the next topic, we'll continue our coverage of systems design activities, by considering the user interface.

